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Elettrizzazione: strofinio

il materiale si elettrizza?

• no: materiale conduttore

• sì: materiale isolante
 come la plastica (-): elettrizzazione resinosa
 come il vetro      (+): elettrizzazione vetrosa

tipo diverso: attrazione
stesso tipo: repulsione

carica
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Elettrizzazione: strofinio

elettronegatività

plastica (-)vetro (+)

Si C

1.90 2.20

H

2.55
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Elettrizzazione: contatto

+
+ +

++

materiali conduttori

attrazione

repulsione

contatto

l'interazione
cambia segno
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Elettrizzazione: induzione elettrostatica

+

-
-

+
+

+

-

elettrizzazione
localizzata e temporanea

materiali conduttori

prossimità e taglioprossimità (senza contatto)

elettrizzazione
opposta e permanente

-
-

+
+

+

-
+
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Elettrizzazione: polarizzazione

materiali isolanti

+

elettrizzazione
localizzata e temporanea

prossimità e taglioprossimità (senza contatto)

nessuna
elettrizzazione

-
-

+
+

+

-
+
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Forza elettrica: carica elettrica

 [ ] [ ][ ] As Cq  = I t  =  = 

protone
• mp = 1.672622ꞏ10-27 kg;   qp = 1.602176ꞏ10-19 C

elettrone
• me = 9.109382ꞏ10-31 kg; qe = -1.602176ꞏ10-19 C

neutrone
• mn = 1.674927ꞏ10-27 kg; qn = 0 C

carica elettrica

q

coulomb
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Forza elettrica: struttura della materia

Modello di Thomson (1902)
• atomo come sfera carica positivamente (e senza massa)
• elettroni cariche negative al suo interno (con massa)

Modello di Lorentz (1905)
• nucleo carico positivamente
• elettroni come sfera carica negativamente

Modello di Rutherford (1911)
• nucleo carico positivamente
• elettroni cariche negative che orbitano

Modello di Bohr (1913)
• nucleo carico positivamente
• elettroni cariche negative su orbite stazionarie
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Forza elettrica: struttura della materia

Atomo
• atomo: r = 10-10 m
• nucleo: r = 10-15 m
• elettrone: r = 10-18 m

• atomo => 107 m (pianeta Terra)
• nucleo => 102 m (campo da calcio)
• elettrone => 10-1 m (pallone da calcio)

1710⋅

l'atomo è vuoto!
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Forza elettrica: forza di Coulomb

bilancia di torsione

F
F

θ q

-q

q

2
1 2

e e r
q qF  = k u
r

 

forza elettrica (di Coulomb)

forza fondamentale

9 2 21  = 8.9874 10  Nm / C
4πe

0
k  = 

ε
⋅

-12 2 28.85418781762 10  C / Nm0ε  = ⋅

costante elettrica

permittività elettrica

t t

e e

M  = k θ
M  = F b

ìïïíïïî

t
e

k θ
F  = 

b
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Forza elettrica: forza di Coulomb

F12
q1

q2

F21

F12

q1 q2

F13

q3

F1

12 21F  = F
 

azione e reazione sovrapposizione degli effetti

1 12 13F  = F  + F
  
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Forza elettrica: forza di Coulomb

1 2
e e r2

q qF  = k u
r

 

forza elettrica (di Coulomb)

interazione tra due cariche
q = 1 C; r = 1 m

99 10  NeF  = ⋅

450 Shuttle!

2
p e

g r
m m

F  = -γ u
r

 

confronto con la
forza gravitazionale

3910p ee e

g p e

q qF k
 = 

F γ m m
»

• età dell'universo
 13 M anni = 4*1017 s

• dimensione dell'universo
 92 M anni luce = 8.7*1026 m
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Campo elettrico

1
4π

1 2
e r2

0

q qF  = u
ε r

 

2
1 1

4π 4π
1 2 2

e r 1 r 1 22
0 0

q q qF  = u  = q u  = q E
ε εr r

æ ö÷ç ÷ç ÷ç ÷÷çè ø

  
2

1
4π r

0

qE = u
ε r

 

campo elettrico

1 i 1 i 1 i 1F  = F  = q E  = q E  = q Eå å å
    

effetto causa

oggetto
[ ]

[ ]
[ ]

N
C

F
E  =  = 

q

vale la sovrapposizione degli effetti

iE = Eå
 

dE = Eò
 
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Campo elettrico

x
θ

dE

dy

x

ry

y

θ
( ) ( )2

1 dd d cos cos
4πx

0

qE  = E θ  = θ  =
ε r

( )2d d d
cos

xq = λ y = λ θ
θ

( )tany = x θ
( )2d d

cos
xy = θ
θ

( )cos
xr = 
θ

( )1 cos d
4π 0

λ= θ  θ
ε x

( ) ( )
+π /2

+π /2
-π /2

-π /2

1 1 1d cos d sin
4π 4π 2πx

0 0 0

λ λ λE  = E  = θ  θ  = θ  = 
ε x ε x ε x

é ùê úë ûò ò

filo rettilineo infinito unif. carico
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Campo elettrico

anello unif. carico

x
R

θ

dE

ds

x
θ

r

( ) ( )2 2

2 2 2 2

1 dd d cos cos
4π

1 d
4π

x
0

0

qE  = E θ  = θ  =
ε x  + R

q x= 
ε x  + R x  + R

( )3/22 2

1d
4πx

0

x qE = E  = 
ε x  + R

ò x

E

R / √2
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Campo elettrico

disco unif. carico

x
dEx

R

r

2πdiscoq  = σ r d 2π dq = σ r r

( ) ( )3/2 3/22 2 2 2

1 d 1d d
4π 20 0

x q xσrE =  = r
ε ε x  + r  x  + r

( )3/22 2

0

2 2

d d
2

1
2

R

x
0

0

xσ r E  = E  = r  =
ε x  + r

σ x=  - 
ε x  + R

æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø

ó
ô
õ

ò

2π
discoq

σ =  
R

:   
2 0

σx R E
ε

»

2
1:   

4π 0

qx R E
ε x

»
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-q

Campo elettrico: linee di flusso

2
1

4π r
0

qE = u
ε r

 
dE = Eò

 

+q

Linee di flusso
• linee orientate, tangenti (direzione) e concordi (verso) al campo
• si addensano dove il campo è più intenso
• non si incrociano mai
• partono (sorgente) e terminano (pozzo) sulle cariche o all’infinito
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+q +q

Campo elettrico: linee di flusso

2
1

4π r
0

qE = u
ε r

 
dE = Eò

 
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Teorema di Gauss: flusso

S
θ

E

( )Φ E  = E S⋅
 

flusso

campo omogeneo: ( ) [ ][ ] 2NΦ m
C

E  = E S  = é ù
ê úë û



( ) ( )Φ dΦ dE  = E  = E S⋅ò ò
  

campo/superficie variabile:

dS

E
E

E

• flusso additivo
tra campi ( ) ( ) ( ) ( )Φ d d d Φ Φ1 2 1 2 1 2E  = E  + E S  = E S  + E S  = E  + E⋅ ⋅ ⋅ò ò ò

        

• flusso additivo
in superfici ( ) ( ) ( )Φ d d d Φ Φ

3 1 2

1 2
S S S

E  = E S  = E S  + E S  = E  + E⋅ ⋅ ⋅ò ò ò
       
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Teorema di Gauss: superficie sferica

q

E

R

2
1

4π r
0

qE = u
ε r

 

( )Φ d d dE  = E S  = E S  = E S  = E S⋅ò ò ò
 

  

24πS = R

( )Φ d
0

qE  = E S  = 
ε

⋅ò
 


teorema di Gauss

( )Φ d 4π eE  = E S  = k q⋅ ⋅ò
 


( )Φ d 4πG  = G S  = - γ m⋅ ⋅ò
  

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Teorema di Gauss: superficie generica

θ E

dΩ

dS

q
r

dΩ

E2

q

E1

( ) ( )Φ d d cosE  = E S  = E S θ⋅ò ò
 

 
( ) 2d cos d dS θ  = S' = Ω r

2
1

4π r
0

qE = u
ε r

 ( )Φ dΦ d
4π 0

qE  =  = Ω
εò ò


 

carica interna d 4πΩ  = ò

carica esterna dΦ 0 = ò
d d1 2Ω  = Ω

dΦ dΦ1 2 = -
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Teorema di Gauss

Teorema di Gauss

"Il flusso del campo elettrico attraverso una superficie chiusa
dipende unicamente dalla carica netta contenuta nella superficie,

e ne risulta proporzionale secondo un fattore 1/ε0"

( )Φ d int

0

q
E  = E S  = 

ε
⋅ò
 



sempre valido, non sempre utile
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Teorema di Gauss

filo rettilineo infinito unif. carico

h
r

( )
lato basi

Φ d d dE  = E S  = E S  + E S  =⋅ ⋅ ⋅ò ò ò
     



( )Φ d int

0

q
E  = E S  = 

ε
⋅ò
 


Gaussflusso

per simmetria, il campo elettrico è
• radiale rispetto al filo
• invariante per traslazione lungo il filo
• invariante per rotazione attorno al filo

simmetrica cilindrica

lato lato

d d 2π= E S  = E S  = E r h =ò ò

1
2π 0

λE = 
ε r

int

0 0

q λh=  = 
ε ε
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R

hr

Teorema di Gauss

cilindro rettilineo infinito unif. carico

per simmetria, il campo elettrico è
• radiale rispetto al filo
• invariante per traslazione lungo il filo
• invariante per rotazione attorno al filo

simmetrica cilindrica

( )Φ d 2π int

0

q
E  = E S  = E r h = 

ε
⋅ò
 


2

2 1π
2int

0

ρRr > R:     q  = ρV = ρ R h     E = 
ε r

2π
2int

0

ρr < R:     q  = ρV = ρ r h     E = r
ε

E

iperbole

retta

R

r
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Teorema di Gauss

sfera unif. carica

per simmetria, il campo elettrico è
• radiale rispetto al centro
• invariante per rotazione della sfera

simmetrica sferica

( ) 2Φ d 4π int

0

q
E  = E S  = E r  = 

ε
⋅ò
 



2
1

4πint
0

qr > R:     q  = q     E = 
ε r

3 3
3 3 3

14 π34 4ππ3
int

0

q q qr < R:     q  = ρV = r  = r      E = r
εR R R

E

r

retta

1/r 2

R

r

Rq
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Campo conservativo: energia potenziale

2
1

4π
1 2

e r
0

q qF  = u
ε r

 
d d dr θr = r u  + r θ u
  

B

2
A

1d d
4π

B

A

r

1 2
e

0
r

q qW = F r  = r
ε r

⋅ ó
õò

 

1
4π

1 2
e

0

q qU  = 
ε r

B B

2
A A

1 1d d d
4π 4π

B

A

r

1 2 1 2
e e

0 0
r

q q q qW = r = -  = - U  = - U
ε ε rr


æ ö÷ç ÷ç ÷ç ÷÷çè ø

ó
õ ò ò

energia potenziale
della forza elettrica

q1

Fe

q2

y

x
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Campo conservativo: energia potenziale

( ) d

0

r

0
r

U r  = U  - F r⋅ò




 
?F = 



đ d d d d dx y zW = F r = F x + F y + F z = - U⋅
 

d d d dU U UU = x + y + z
x y z

¶ ¶ ¶
¶ ¶ ¶

x
UF  = -
x

¶
¶

y
UF  = -
y

¶
¶

z
UF  = -
z

¶
¶

( )gradF = - U


gradiente

U

x
x0

F

F
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Campo conservativo: energia potenziale

(1)

(2)

A
B

y

x

B B

A A(1) (2)

d dW = F r  = F r⋅ ⋅ò ò
  

B A B B

A B A A(1) (2) (1) (2)

d d d d d 0W = F r  = F r  + F r  = F r  - F r  = ⋅ ⋅ ⋅ ⋅ ⋅ò ò ò ò ò
        

( )Λ d d 0F  = F r  = q E r  = ⋅ ⋅ò ò
    

circuitazione

F = qE
 
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Campo conservativo

III legge di Maxwell

"La circuitazione del campo elettrico lungo una linea chiusa
è nulla"

( )Λ d 0E  = E r  = ⋅ò
  
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Campo conservativo: potenziale elettrico

1
4π

1 2
e

0

q qU  = 
ε r

1 1
4π 4π

1 2 2
e 1 1 2

0 0

q q qU  =  = q  = q V
ε r ε r

æ ö÷ç ÷ç ÷ç ÷÷çè ø

1
4π 0

qV = 
ε r

potenziale elettrico

1 i 1 i 1 i 1U  = U  = q V  = q V  = q Vå å å

effetto causa

oggetto
[ ]

[ ]
[ ]

J V
C

U
V  =  =  = 

q

vale la sovrapposizione degli effetti

volt

iV = Vå

dV = Vò
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Campo conservativo: potenziale elettrico

( )gradF = - U


( )gradE = - V


x
UF  = -
x

¶
¶

y
UF  = -
y

¶
¶

z
UF  = -
z

¶
¶

x
VE  = -
x

¶
¶

y
VE  = -
y

¶
¶

z
VE  = -
z

¶
¶

F = qE
 

[ ]
[ ]
[ ]

N V
C m

F
E  =  =  = 

q

U = qV
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( ) 1d
4π

r

0r

qr > R:     V r  = V  - E r  = 
ε r

¥

¥ ò

Campo conservativo: potenziale elettrico

sfera unif. carica

2
1

4π 0

qr > R:     E = 
ε r

Rq

r
VE  = -
r

¶
¶

( )
2

2
1d 3

8π

r

R
0R

q rr < R:     V r  = V  - E r  =  - 
ε R R

æ ö÷ç ÷ç ÷ç ÷ç ÷çè øò

V

r

R

parabola

iperbole

3
1 r

4π 0

qr < R:     E = 
ε R
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Campo conservativo: energia elettrica

B

A

dintW  = F r  = - U⋅ò
 

B B

A A

d d Δext ext int f iW  = F r  = -F r  = -W  = U = U  - U⋅ ⋅ò ò
  

ir  = ¥
 0iU  = ext fW  = U

1
4π

1 2
e

0

q qU  = 
ε r
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Campo conservativo: energia elettrica

q3

r23r13

01W  = 

1Δ Δ
4π

1
2 2 2 2 1 2

0 12

qW  = U  = q V = q V  = q
ε r

( ) 1Δ Δ
4π

1 2
3 3 3 3 1 2 3

0 13 23

q qW  = U  = q V = q V  + V  = q  + 
ε r r

æ ö÷ç ÷ç ÷ç ÷çè ø

1
4π

1 3 2 31 2
e 1 2 3

0 12 13 23

q q q qq qE  = W = W  + W  + W  =  +  + 
ε r r r

æ ö÷ç ÷ç ÷ç ÷çè ø

1
2

n

e ij
i j

E  = U
¹
å

1

1
2

n

e i i
i=

E  = q Vå 1 d
2eE  = V qò

energia elettrica

q2

r12

q1

1
4π

1 2
e

0

q qU  = 
ε r
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Campo conservativo: energia elettrica

sfera unif. carica

1
4π 0

qr > R:     V = 
ε r

2

2
1 3

8π 0

q rr < R:     V =  - 
ε R R

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
Rq

2 2
2

2

0

1 1 1 3d 3 4π d
2 2 8π 20π

R

e
0 0

q r qE  = V q =  - ρ r r  = 
ε R ε RR

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

ó
ôõò

2d d 4π dq = ρ V = ρ r r

r

dr

34 π3

qρ = 
R

1
2eE  = Vq =

e se tutta la carica
andasse sulla superficie?

21
2 4π 8π0 0

q q= q = 
ε R ε R
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θ

r

Dipolo elettrico: interazioni create

q-q

d

y

x

r+

r-

P1
4π+

0 +

qV  = 
ε r

1
4π-

0 -

-qV  = 
ε r

1 1
4π 4π

- +
+ -

0 + - 0 - +

r  - rq - qV = V  + V  =  +  = 
ε r r ε r r

æ ö÷ç ÷ç ÷ç ÷çè ø

approssimazione di dipolo

r  d
( )

2

cos- +

- +

r  - r  d θ

r r  r

ìï »ïïíï »ïïî

( ) ( )
2 2

cos cos1 1
4π 4π 4π

- +

0 - + 0 0

qd θ p θr  - rqV =  = 
ε r r ε εr r

»

p = qd


momento di dipolo elettrico

[ ] [ ][ ] Cmp  = q d  = 
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θ

r

Dipolo elettrico: interazioni create

q-q

d

y

x

r+

r-

P( )
2

cos1
4π 0

p θ
V = 

ε r

( )gradE = - V


y

θ x

Er

r

Eθ
E

p

( )

( )

3

3

2 cosd 1
d 4π

sin1 d 1
d 4π

r
0

θ
0

p θVE  = -  = 
r ε r

p θVE  = -  = 
r θ ε r

ìïïïïïïíïïïïïïî

3
1 20 :    0

4πθ r
0

pθ = E  =                E  = 
ε r

3
π 1:   0
2 4πθ r

0

pθ = E  =    E  = 
ε r
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Dipolo elettrico: interazioni subite

M = d F = d qE = qd E = p E´ ´ ´ ´
      

( ) ( )Δ+ - + -U = qV  - qV  = q V  - V  = q -E x  =

( ) ( )grad gradF = - U  = p E⋅
 

q

-q

p FF

E

θ
( )( ) ( )cos cos= q -E d θ  = -pE θ  = -p E⋅


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Dipolo elettrico: sviluppo in multipoli

qi

y

θi x

di r

P
ri

1
4π

i
i

0 i

q
V  = 

ε r

( )

( )

2 2

2

2 cos

1 2 cos

i i i i i

i i
i

r  = r - d  = r  + d  - rd θ  =

d d
= r  +  - θ

r r
æ ö÷ç ÷ç ÷÷çè ø



( )

( ) ( )( )

2

2
2

2 3

1
4π

1 2 cos

1 1 1 11 cos 3cos 1
4π 2 4π

i
i

0 i i
i

i i i i2 i3
i i i

0 0

q
V  = 

ε d dr  +  - θ
r r

q d d k k
 + θ  + θ  -  + ...  = q  +  +  + ...

ε r r r ε r r r

»
æ ö÷ç ÷ç ÷÷çè ø

é ù é ùæ ö æ öê ú÷ ÷ç ç ê ú» ÷ ÷ç çê ú÷ ÷÷ ÷ç ç ê úè ø è øê ú ë ûë û

21 1 3: 1
2 81ir d   - x + x  - ...

 + x
»

x
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Dipolo elettrico: sviluppo in multipoli

qi

y

θi x

di r

P
ri

2 3

2 3

2 3

1 1
4π

1 1 1 1
4π

1
4π

i2 i3
i i

0i i

i i i2 i i3
0 i i i

31 2

0

k k
V = V  = q  +  +  + ...  =

ε r r r

= q  + q k  + q k  + ...  =
ε r r r

kk k=  +  +  + ...
ε r r r

æ ö÷ç ÷ç ÷ç ÷è ø

é ù
ê ú
ê ú
ê úë û

æ ö÷ç ÷ç ÷ç ÷è ø

å å

å å å

2 3

1
4π

1 1
4π

i
i

0 i

i2 i3
i

0

q
V  =  =

ε r

k k
= q  +  +  + ...

ε r r r

æ ö÷ç ÷ç ÷ç ÷è ø

1k

2k

3k

termine di...

...monopolo

...dipolo

...quadrupolo
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Formulazione differenziale: condizioni al contorno

2

1

dS ( )dΦ d d2 2 2 n2E  = E S  = E S⋅
 

( )dΦ d d d1 1 1 1 2 n1E  = E S  = -E S  = -E S⋅ ⋅
   

( )dΦ 0lat E   »


( ) ( ) ( ) ( ) ( )dΦ dΦ dΦ dΦ d Δ d1 2 lat n2 n1 nE  = E  + E  + E  = E  - E S = E S
   

( ) d ddΦ
0 0

q σ SE  =  = 
ε ε


Δ n

0

σE  = 
ε
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2

1

dr

Formulazione differenziale: condizioni al contorno

( )dΛ d d2 2 2 t2E  = E r  = E r⋅
  

( )dΛ d d d1 1 1 1 2 t1E  = E r  = -E r  = -E r⋅ ⋅
   

( ) ( ) ( ) ( ) ( )dΛ dΛ dΛ dΛ d Δ d1 2 n t2 t1 tE  = E  + E  + E  = E  - E r = E r
   

( )dΛ 0E  = 


Δ 0tE  = 

( )dΛ 0n E   »

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Formulazione differenziale: leggi di Maxwell

( )dΦ d d d d' ''
x

'
x

' ' ''
x = E S = E S = E y zE ⋅

 

( ) dd d d dΦ ' ' '
x

'
x x = E S = -E S = -E yE z⋅



( ) ( ) ( )dΦ dΦ dΦ d d d d d d d d d d d'' ' '' ' x x
x x x x x x

E E
E  = E  + E  = E y z - E y z = E y z = x y z = V

x x
æ ö¶ ¶÷ç ÷ç ÷÷çè ø¶ ¶

  

dx
y

z

x

dy

dx
dz

dz

dy

( )dΦ dy
y

E
E  = V

y
¶

¶



( )dΦ dz
z

EE  = V
z

¶
¶


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Formulazione differenziale: leggi di Maxwell

dx
y

z

x

dy

dx
dz

dz

dy

( ) ( ) ( ) ( ) ( )dΦ dΦ dΦ dΦ  +  + d div dyx z
x y z

EE EE  = E  + E  + E  = V = E V
x y z

æ ö¶¶ ¶ ÷ç ÷ç ÷ç ÷÷ç ¶ ¶ ¶è ø

    

( ) d ddΦ
0 0

q ρ VE  =  = 
ε ε


( )div

0

ρE  = 
ε



( ) ( ) ( )Φ dΦ d div dE  = E  = E S  = E V⋅ò ò ò
   


teorema della divergenza
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dx

y

x

dy

Formulazione differenziale: leggi di Maxwell

( )dΛ d d' '
x

'
x  = E r = E xE ⋅

 

( ) ddΛ d'' '''
x

'
x = E r = -E xE ⋅

 

( ) ( ) ( )dΛ dΛ dΛ d d d d d d' '' ' '' x
x x x x x x

E
E  = E  + E  = E x - E x = - E x = - y x

y

æ ö¶ ÷ç ÷ç ÷ç ÷ç ¶è ø

  

( )dΛ d d d dy
y y

E
E  = E y = x y

x
¶

¶



( ) ( ) ( )dΛ dΛ dΛ d dy x
y x

E E
E  = E  + E  =  - x y

x y

æ ö¶ ¶ ÷ç ÷ç ÷ç ÷÷ç ¶ ¶è ø

  
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dx

y

x

dy

Formulazione differenziale: leggi di Maxwell

( )dΛ d d dy yx x
z

E EE E
E  =  - x y =  - S

x y x y

æ ö æ ö¶ ¶¶ ¶÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶ ¶è ø è ø


piano xy:

( )dΛ d d dy yz z
x

E EE EE  =  - y z =  - S
y z y z

æ ö æ ö¶ ¶¶ ¶÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶ ¶è ø è ø


piano yz:

( )dΛ d d dx xz z
y

E EE EE  =  - z x =  - S
z x z x

æ ö æ ö¶ ¶¶ ¶÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø¶ ¶ ¶ ¶


piano zx:
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dx

y

x

dy

Formulazione differenziale: leggi di Maxwell

( ) ( )dΛ d d d rot dy yx xz z
x y z

E EE EE EE  =  - S  +  - S  +  - S  = E S
y z z x x y

æ ö æ ö¶ ¶æ ö¶ ¶¶ ¶÷ ÷ç ç÷ç÷ ÷ç ç ⋅÷ç÷ ÷÷ç ç÷ç÷ ÷÷ ÷ç çè ø¶ ¶ ¶ ¶ ¶ ¶è ø è ø

 

( )dΛ 0E  = 


( )rot 0E  = 


( ) ( ) ( )Λ dΛ d rot dE  = E  = E r  = E S⋅ ⋅ò ò ò
   

teorema del rotore
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Formulazione differenziale: leggi di Maxwell

Teorema di Gauss Campo conservativo

relazioni integrali

condizioni al contorno

relazioni infinitesime

( )Φ d int

0

q
E  = E S  = 

ε
⋅ò
 



Δ n
0

σE  = 
ε

Δ 0tE  = 

( ) d 0E  = E r  =  ⋅ò
  

( )div
0

ρE  = 
ε


( )rot 0E  = 

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x y z = u  + u  + u
x y z
¶ ¶ ¶


¶ ¶ ¶

   

( )div yx zEE EE  =  +  + 
x y z

¶¶ ¶
¶ ¶ ¶



Formulazione differenziale: leggi di Maxwell

( )rot

x y z

x y z

u u u

E  = 
x y z

E E E

¶ ¶ ¶
¶ ¶ ¶

  



nabla

( )rot E  = E´
 

( )div E  = E⋅
 

( )grad x y z
V V VV  = u  + u  + u
x y z

¶ ¶ ¶
¶ ¶ ¶

   ( )grad V  = V

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( )div yx zEE EE  =  +  + 
x y z

¶¶ ¶
¶ ¶ ¶



Formulazione differenziale: identità vettoriali

( )rot

x y z

x y z

u u u

E  = 
x y z

E E E

¶ ¶ ¶
¶ ¶ ¶

  



( ) ( ) ( )div rot rotA B  = A B - A B´ ⋅ ⋅
    

( )( )div rot 0A   º


( )grad x y z
V V VV  = u  + u  + u
x y z

¶ ¶ ¶
¶ ¶ ¶

  

( )( )rot grad 0f   º

( ) ( )( ) ( )( )2 grad div rot rotA   A  - A   º
  

derivate prime derivate seconde

teorema di Schwar(t)z

2 2f f = 
x y y x
¶ ¶
¶ ¶ ¶ ¶

( ) ( ) ( )div div gradfA  = f A  + A f⋅
  
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( )div
0

ρE  = 
ε



Formulazione differenziale: leggi di Maxwell

( )rot 0E  = 


( )( )rot grad 0f   º ( )gradE = - V


1 d 1 d
4π 4π0 0

q ρV =  = V
ε r ε rò ò

vale la sovrapposizione degli effetti

V = ?
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Formulazione differenziale: leggi di Maxwell

( )( )rot grad 0f   º ( )gradE = - V


0V = V  + k

( ) ( )

( ) ( ) ( )

grad grad

grad grad grad

0

0 0

V  = V  + k  =

= V  + k  = V

( ) ( )( ) ( )2div div grad
0

ρ- E  = - - V  = V  = -
ε




2 2 2
2

2 2 2 =  =  +  + 
x y z
¶ ¶ ¶

 ⋅
¶ ¶ ¶

 

laplaciano

equazione di Poisson

( )div
0

ρE  = 
ε



( )rot 0E  = 


arbitraria
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Formulazione differenziale: energia elettrica

( )gradE = - V
( )div

0

ρE  = 
ε



( ) ( ) ( ) ( ) 2div div grad div0 0 0 0 0ρV = ε V E  = ε VE  - ε E V  = ε VE  + ε E⋅
   

( ) ( ) ( )div div gradfA  = f A  + A f⋅
  

( ) 21 1 1d div d d
2 2 2el 0 0E  = ρV τ  = ε VE τ  + ε E τò ò ò



( )div d dVE τ  = VE Sò ò
 

2
1 1VE
r r

µ

21 d
2el 0E  = ε E τò

2S rµ

21
2el 0ρ  = ε E

densità di energia elettrica




